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Abstract 
This paper reports the results of an empirical analysis of operational risk in an Australian 
Bank and derives a model to represent the distribution of losses. Comparisons are made with 
models traditionally used to model operational risk. The paper concentrates more on the 
severity issue than the frequency issue. 
Keywords: Operational Risk, Extreme Value Theory, Multi Distributions 
 

The Nature of Operational Risk  

 Operational risk is usually defined as the risk resulting from inadequate or failed internal 
processes, people, and systems or from external events.  
 
Banks in Australia are required by the regulator to model their operational risks and to satisfy 
the regulator of not only the suitability of the modelling process, but also of the 
appropriateness of the resultant capital required to manage the residual risk remaining to give 
an overall probability of survival of the bank of 99.9%, which is a very high order of implied 
accuracy of the modelling. Naturally, banks want the smallest estimate of expected losses that 
satisfies this confidence limit to minimise capital required. 
             
One of the impediments to meeting this requirement is that most banks have not collected any 
operational risk data as it was generally not needed and the cost was deemed not justifiable. 
Even if the data had been collected, accuracy would have been an issue as indirect losses such 
as system errors, which cause delay in transactions, may produce losses which are not readily 
quantifiable and the duration of operational loss events can vary significantly.  
              
There is also the problem of “truncation” which refers to the minimum loss for reporting 
purposes, and this usually changes over time, and varies between banks, making inter bank 
comparisons difficult. 
               
There are two separate issues that need to be considered when evaluating operational risk, 
namely, the severity of losses, i.e. the amount, and the frequency of losses, i.e. the number of 
occasions the loss occurs. In this paper we will concentrate more on the severity issue.   

Data 

Data was obtained from an Australian bank for the period 1988 through 1996 and adjusted for 
inflation. 
             
The following table shows the summary statistics of the operational losses reported: 
 

Statistic  Value   
Mean  $2.0 x 106   

Median  $3.6 x 105   
Variance  $5.0 x 1014   

Standard Deviation  $2.2 x 107   
Minimum  $1.2 x 104   
Maximum  $1.4 x 109   

Table 1: Summary Statistics  
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The following graph shows the frequency and severity of the operational losses: 

 
Figure 1: Frequency v Severity of Operational Risk Losses 

 
Observations on the Loss Distribution 
 
Some of the main observations are:  

• There are a large number of small losses combined with small number of 
large losses as indicated in the frequency versus severity plot in Figure 1. 
• The time series plot in Figure 2 reveals clear evidence of extreme values. 
Figure 3 showing the empirical density of the losses and the empirical distribution on 
a logarithmic scale also supports this view. 
• The occurrences of the losses are irregularly spaced in time, suggesting non 
stationarity.  
• The severity and frequency of losses tend to decrease with time. This does 
not support the hypothesis that a reporting bias exists as suggested in some previous 
studies (e.g. Chavez-Demoulin and Embrechts [1] and Embrechts et al. [3]) where the 
severity and frequency tend to increase in time, reflecting the increased awareness 
and reporting of operational losses. Our results may reflect improved risk 
management practices and/or a modified data collection process.  
• The data is very skewed and kurtotic. The kurtosis stems from the 
concentration of data points in the lower losses and the skewness is due to the 
extreme data points with the largest loss being approximately 64 standard deviations 
away from the mean. 

 
 

 
Figure 2: Time Series plot of Operational Risk Losses 
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Figure 3: (Top) Empirical Distribution of Losses (Bottom) Empirical Distribution of Losses on a 

Logarithmic Scale (the dotted line represents the mean) 

 
Normality Analysis 
 
The distorted nature of the normality plot in Figure 4 clearly supports the hypothesis that 
operational risk data is not normally distributed, with both the QQ-plots and PP-plots 
deviating from the 45 degree linear reference line significantly. 

 

 
Figure 4: Normality Plot of the Severity of Losses (the diagonal line represents the 45 degree 

reference line) 
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Lognormal Analysis 
 

Significant improvements are made when we model the data with a lognormal distribution as 
seen in Figure 5. The PP-plot almost coincides with the reference line and the majority of the 
QQ-plot is linear.  
 
However, due to the curvature at the tails, even the lognormal distribution is unable to 
properly account for the extreme nature of the data.  

 
 
 

 
Figure 5: QQ-plot using the Lognormal Distribution of the Severity of Losses (the diagonal line 

represents the 45 degree reference line) 

 

Single Distribution Modeling 

It was impractical to measure the dependence structure for all 56 risk cells as specified under 
the Basel II guidelines. Thus, the dependence analysis was conducted by splitting the data up 
into a bivariate case consisting of two business lines only - ‘Retail Banking’ ( )RB  and ‘All 
Others’ ( )AO .  
 
Both the Poisson and Negative Binomial distributions were applied to the data. The Poisson 
distribution is inappropriate for modelling the frequency of losses as the ratio between the 
sample variance and sample mean should be approximately equal to 1 for the Poisson 
distribution to be suitable and in our case this ratio is 10.8. The estimated parameters and the 
corresponding 95% confidence levels are shown in Table 2, and comparisons of the expected 
results using the Poisson and Negative Binomial distributions and the actual results are shown 
in Figure 6. 
 

Distribution  Parameters  95% Confidence Level   
Poisson  75 4176λ = .   73.6333  77.2019  
Negative  7 2923r = .   4.8808  9.7038  
Binomial  1

1 0 0882β+ = .  0.0608  0.1155  

Table 2: Parameter Estimation for the Frequency of Losses. 
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Figure 6: Plot of the Empirical Frequency Distribution fitted with the Poisson and Negative 

Binomial Distribution 

 
The peaks over thresholds methodology in Extreme Value Theory was used to model 

the severity of the losses. Two different parameter estimation methods were used, namely 
maximum likelihood estimation (MLE) and probability weighted moments (PWM). The 
results can be seen in Table 3 where MLE(S)G  and PWM(S)G  denote the severity models 
corresponding to MLE and PWM estimated parameters, respectively. 

 
 
 

 
 Parameter  Estimate  95% CI   

MLE  σ   1966911.1422 1680562.7830 2302049.9327 
( MLE(S)G )  ξ  1.0397 0.8810 1.1986 

PWM  σ   2438920.8784 2116459.8983 2903196.9420 
( PWM(S)G )  ξ  0.8099 0.6928 0.8704 

Table 3: Parameter Estimation for the Severity of Losses using the GDP Distribution 

   
From the QQ and PP plots in Figure 7 it is evident that using GDP does improve the fit for the 
loss data as the plots are fairly linear and coincide well with the 45 degree line. 
 

 
Figure 7: QQ-Plot (Left) and PP-Plot (Right) for the Truncated Severity Data using the MLE 

Parameters  
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We considered the effect on VaR of MLE(S)G  and PWM(S)G  along with the lognormal 
distribution for comparison, and compared the number of violations from the model with the 
expected number of violations, where a violation occurred when the data value exceeded the 
calculated VaR ( )α . For a confidence level α  with n  observations, the expected number of 
violations will be (1 )n α− . If the number of violations is higher than the expected number of 
violations, then the model underestimates the extreme risk. From Table 4 it is clear that 

MLE(S)G  provides the best fit in terms of least violations while the number of violations for 
the Lognormal distribution significantly increases as the confidence level increases. Both the 
GPD models pass the kupiec test in that they coincide with the null hypothesis that the data 
conforms with the selected model, whereas the Lognormal rejects the null hypothesis at all α  
levels.   
 

 
 Number of Violations   

α   Theoretical MLE(S)G   PWM(S)G   Lognormal 
0.950  347 346 321 286  
0.990  69 72 83 90  
0.995  35 32 43 61  
0.997  21 21 28 45  
0.999  7 5 9 25  

Table 4: Number of Violations calculated using the Fitted Distributions 

 
An aggregate loss distribution was formed by simulating annual aggregate losses and then 
fitting those losses to an appropriate distribution. One hundred thousand simulations were 
used. The frequency distribution used was the Negative Binomial with parameters as in Table 
2. The severity was simulated using both sets of parameters MLE(S)G  and PWM(S)G . The 
simulations generated from MLE(S)G  and PWM(S)G  is denoted as MLE(S)( )S G  and 

PWM(S)( )S G , respectively. The statistical characteristic of the resulting simulation is shown 
Figure 8. The simulated data continues to shows clear evidence of skewness and kurtosis even 
on a logarithmic scale.   
 
 

 
Figure 8: Histogram of the Aggregate Losses for the Simulation using the MLE Parameters 

MLE(S)G  on a Logarithmic Scale (the corresponding histogram for PWM(S)G  is similar, but 
slightly less extreme in nature) 
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The distribution is again very kurtotic and right-skewed as expected. The largest loss 
in MLE(S)( )S G  is 131.3599 10×  and in PWM(S)( )S G  is 117.1276 10× . Intuition suggests that 
both these amounts are far too large to be realistic, especially given the size of the bank for 
which we have data. The MLE parameters clearly give much larger losses as can be seen in 
the statistics. However, the simulations for PWM are more kurtotic and skewed suggesting 
that there is a greater tendency for smaller losses. To test sensitivity of the parameters, various 
combinations of σ  and ξ  were used to perform the simulation. It was found the size of the 
losses where particularly sensitive to changes in ξ  but even large changes in σ  did not have 
any noticeable effect on the size of losses. 

 
 

Statistic Value (MLE) Value (PWM) 
Mean 4.6333 x 109 1.8301 x 109 

Median 2.2529 x 109 1.5372 x 109 
Variance 9.8909 x 1021 3.1668 x 1019 

Standard Deviation 9.9453 x 1010 5.6275 x 109 
Semi-variance 1.0796 x 1022 4.1584 x 1019 

Kurtosis 1.7138 x 104 2.0631 x 104 
Skewness 1.2180 x 102 1.2985 x 102 
Minimum 8.7975 x 108 6.7782 x 108 
Maximum 1.6930 x 1013 9.9939 x 1011 

Table 5: Summary Statistics of the Aggregate Losses under MLE and PWM 

 
Both the GEV and GPD were fitted to the simulated loss data. The GEV distribution provided 
a much better fit than the GPD so we only considered the GEV fit. We let MLE (S)

MLE(A)
( )S G

G  and 

MLE (S)
PWM(A)

( )S G
G  denote the GEV fit using MLE and PWM techniques to the simulated data 

MLE(S)( )S G , respectively, and similarly, the notation for PWM(S)( )S G  fits are PWM (S)
MLE(A)

( )S G
G  

and PWM (S)
PWM(A)

( )S G
G . Both MLE and PWM methods gave roughly the same fit for the GEV 

distribution. The MLE approach seems to provide a slightly more accurate fit to the body of 
data when compared to the PWM approach. This can possibly be explained by the fact that 
we have enough simulated data points for the MLE approach to reach asymptotic 
convergence. The PWM, on the other hand, gives a heavier tail to the distribution, and as a 
result, performs better in the violations analysis shown in Table 6.  
 
 

 Number of Violations   
α  Theoretical 

MLE (S)
MLE(A)

( )S G
G  MLE (S)

PWM(A)
( )S G

G  PWM (S)
MLE(A)

( )S G
G PWM (S)

PWM(A)
( )S G

G  

0.950 5000 6168 3820 4833 3328 
0.990 1000 2491 909 1839 843 
0.995 500 1749 515 1309 512 
0.997 300 1396 323 1019 346 
0.999 100 817 124 660 150 

Table 6: Number of Violations calculated using the Fitted Distributions 
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The VaR ( )α  was calculated using the fitted GEV distributions. These results show that the 
VaR ( )α  increases with the confidence level. In addition, the MLE parameters MLE(S)( )S G  
produce significantly larger VaR ( )α  than the corresponding PWM parameters PWM(S)( )S G .  
 

 VaR( )α   
α  

MLE (S)
MLE(A)

( )S G
G  MLE (S)

PWM(A)
( )S G

G  PWM (S)
MLE(A)

( )S G
G  PWM (S)

PWM(A)
( )S G

G  

0.95 6.2016 x 109 8.5478 x 109 3.0752 x 109 3.5329 x 109 
0.99 1.1906 x 1010 2.8702E x 1010 4.6355 x 109 7.1614 x 109 
0.995 1.5905 x 1010 4.9976 x 1010 5.5387 x 109 9.9851 x 109 
0.997 1.9740 x 1010 7.5671 x 1010 6.3192 x 109 1.2854 x 109 
0.999 3.1591 x 1010 1.8651 x 1011 8.4054 x 109 2.2479 x 1010 

Table 7: Value-at-Risk Values 

 
It is clear that this methodology overestimates the tail of the aggregate losses significantly. 
This problem was also highlighted by King [4].  

 
Multi Distribution Modelling 
 
A possible solution for this tail estimation problem is the use of multiple distributions which 
will dampen the overestimating of the tails as it will place more weight on smaller losses and 
less weight on the tail. The use of multiple models essentially restricts the number of larger 
losses that can occur, thus giving a much more reliable estimate of the aggregate distribution 
as it takes into account the rarity of the extreme losses in the frequency.   
 
 
Difficulties were encountered in attempting to fit multiple distributions. We used MLE to 
simultaneously maximise the likelihood in both distributions as well as the weighting factor. 
The algorithm used was based on trying to maximise the log-likelihood of the mixture 
solution but unfortunately no optimal solution was found. The process was simplified by 
taking a multi-step approach. The data was split into two portions - smaller than threshold tu  
(body bX ) and larger than tu  (tail tX ) as represented in Figure 9.  
 

 
Figure 9: Illustration of the Mixed Distribution Concept (H is the truncation point and Ut is the 

value were the tail is believed to begin) 

 
The losses bX  were fitted with the lognormal distribution using MLE and extreme value 
theory techniques applied to tX . If ml  denotes the log-likelihood function for the mixture 
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model and LNf  and GPDf  are the densities of the fitted Lognormal and GPD, the weighting 
factor w  was varied between zero and one to maximise  

 ( )LN GPDln (1 )m wf w f= + − .∑l  
 

This method also failed to converge to a solution. The resulting weights were either close to 
zero or close to one.   

 
An empirical based technique was then used to implement the mixture distribution. We chose 
u  to be the truncation point used in the bank wide analysis, and the weighting factor was the 
empirical estimation for the proportion of losses less than u , that is, # losses less than 

total # losses
uw = . The 

Lognormal distribution was estimated using MLE yielding parameters 12.5693μ =  

and 2 1.3522σ = . The statistical characteristics of the mixed severity distribution are shown 
in Table 8. 
 
 

Statistic Value (MLE) Value (PWM) 
Mean 4.4979 x 109 1.6299 x 109 

Median 2.3252 x 109 1.3954 x 109 
Variance 6.7723 x 1018 1.2010 x 1019 

Standard Deviation 2.6024 x 109 3.4656 x 109 
Semi-variance 9.4711 x 1018 1.6111 x 1019 

Kurtosis 2.1616 x 104 2.4960 x 104 
Skewness 1.1967 x 102 1.2918 x 102 
Minimum 6.1717 x 108 6.4101 x 108 
Maximum 5.5123 x1011 7.6331 x1011 

Table 8: Statistics for the Aggregate Loss Simulation produced from the Mixture Severity 
Distribution. 

  
The use of the multiple distributions produced less extreme losses for the aggregate 
distribution. This is evident when Table 5 and Table 8 are compared. The maximum losses 
and variance are significantly smaller for the multiple distribution case. This is especially true 
for the simulations using MLE(S)G  parameters where the maximum loss and variance was 
reduced by a factor of 30 and 1400, respectively. Furthermore, the mean and median 
remained stable for both methods. The GEV distribution generated a better fit.  

 
Comparisons with non Australian Analysis 
 
Our results demonstrate major differences with studies conducted overseas in terms of the 
empirical analysis, features and characteristics of the data. Our value-at-risk amounts are 
much smaller even when compared to a medium-sized non-internationally active U.S. 
bank [5]. It may be that since Australian banks tend to hold higher proportions of residential 
mortgage loans in their accounts than most overseas banks, Australian banks are expected to 
be less risky than equivalent overseas banks , and consequently the need to hold large capital 
reserves is reduced. 
 
 
The analysis performed by de Fontnouvelle et al. [2] indicates that non-U.S. operational 
losses are significantly larger than U.S. losses. The percentiles for the non-U.S. losses are 
approximately double the equivalent percentiles for U.S. losses at both the aggregate and 
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business line level. This is inconsistent with our data set, yielding capital reserves in the order 
of hundreds of millions rather than billions.  
             Another inconsistency is the modelling of the frequency of losses where most 
banks have used the Poisson distribution. This is most likely due to the greater 
number of favourable statistical properties inherent in the Poisson distribution rather 
than the ability to produce a better fit. 

 

Conclusion 

Extreme value theory has demonstrated significant potential to account for the heavy tail of 
operational losses where other conventional methods fail. We have shown statistically that the 
use of conventional methods to model severity is inadequate because the operational loss data 
exhibits kurtotic and right-skewed behaviour whilst conventional models place emphasis on 
fitting the central or body of the data, and thus, neglect the extreme percentiles.  It is the 
extreme losses that are important in the type of analysis required under Basel 11.  
 
 
However, a major limitation in the implementation of extreme value theory is the lack of data 
which inhibits capturing the generalised Pareto nature of the excess distributions without 
sacrificing the majority of our data set. The ability to model any sort of dependence is also 
limited by the availability of quality data. Even if we could overcome these limitations, the 
regulators may not permit the use of models based on such a small sample despite the 
accuracy of the dependence models. As such, it may take many years before any banks can 
convincingly justify the use of any sophisticated dependence structure between the various 
risk cells and reap the benefits of diversification.   
 
 
In our view, the Poisson distribution, which is the most common distribution used to model 
operational risks has proved to be inappropriate for our data set.  
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